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Foreword 

NORDA's effort in air/sea interaction encompasses investigation into the detailed 
processes at work at the ocean surface, including wave growth due to wind forcing. 
The dynamics of the surface itself can be separated partly from the more involved 
problem of determining turbulent stresses on the moving, wavy surface This work 
documents theoretical developments which potentially improve the accuracy and ef- 
ficiency of the dynamic calculation by reducing the inherently two-dimensional 
(horizontal and vertical) problem to a one-dimensional system along the surface Earlier 
work along this line has been concerned with free surfaces and irrotational flow. 
The work presented here is a generalization which allows for specified surface forc- 
ing and rotational flow. This report contains further development of theoretical results 
from NORDA Technical Note 184, and will also appear in the Journal of Computa- 
tional Physics, Vol. 56. 

R. P. Onorati, CaptaiVusN 
Commanding Officer, NOF={DA 



Executive Summary 

The governing equations for a moving hydrodynamic surface lead to a local conser- 
vation law for a surface velocity variable g^ not in common use. When the surface 
is closed and applied forces are conservative, the law reduces to Kelvin's circulation 
theorem. When the flow is irrotational, it reduces to Bernoulli's law. Incorporation 
of the conservation law into a numerical water wave model cast in an Eulerian represen- 
tation can result in: reduction of the prognostic equations from two spatial dimen- 
sions to one; and realization of formal accuracy to all orders in nonlinearity 

In a companion paper, the shallow water diagnostic equation (Poisson's equation) 
is also reduced to a one-dimensional problem. The prognostic equation derived here, 
thus allows a purely one-dimensional treatment of traditionally two-dimensional shallow 
water waves. This yields significant resolution and execution speed benefits for the 
numerical integration of the overall system, Techniques also exist that reduce the 
deep water diagnostic equation to one dimension. Thus the new prognostic equa- 
tion should be useful in modeling two-dimensional deep water waves as a one- 
dimensional problem. 
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A conservation law related to Kelvin's 
circulation theorem 

1. Introduction 
This brief report derives a result used by one of the authors 
(Witting) in construction of a unified model of shallow water 
waves [1]. In an earlier investigation, one of the authors 
(McCtonald) came across an unfamiliar "conservation-of-velocity" 
law related to Kelvin's circulation theorem. Together [2]. we 
recognized the result as the exact counterpart of an approximate 
expression used by Witting [3] to derive reflection coefficients 
for long linear waves. For irrotational flows, the conservation 
of velocity law is a variant of Bernoulli's law, but the general 
form holds for rotational flows as well. 

In the next section we derive the conservation law, demonstrate 
its connection with the circulation theorem and with Bernoulli's 
law, and point out its utility in three-equation wave models. Such 
models have as dependent variables Uy Vy and h, denoting, 
respectively, horizontal and vertical surface velocity components, 
and wave height. The governing equations consist of two prog- 
nostic equations for time advancement of h and a surface velocity 
variable q^ to be defined in equation (9) below. The system is 
closed by a diagnostic relation derived from Poisson's equation 
taking into account appropriate boundary conditions. The form 
of the diagnostic relation may be application dependent {e.g., 
deep versus shallow water waves) and will not be considered 
in detail here In the companion paper [1], Witting uses a power 
series technique to relate surface and bottom velocity poten- 
tials for shallow water waves. For deep water waves, the diagnostic 
relation can involve a singular integral equation [4] or a map- 
ping which renders the surface flat [5]. 

2. Surface equations 

A. Derivation of the 
conservation-of-velocity law 
We choose a coordinate system with x horizontal, y vertically 
upward, and h(x,i) the elevation of the surface (or, more generally, 
an arbitrary continuous surface of markers moving with the 
fluid). The equations governing the fluid and surface are 

a) 

^   _  9« du_ ^   _   i.  /r ^P 

Dv _ dv dv 

Dt       dt dx 

dv        ;   /        dp 

dy Q   \  ^     dy 

where subscript s denotes evaluation at the surface, g is the 
fluid density, p the pressure, g the acceleration of gravity, and 
(Fy., Fy) are horizontal and vertical components of remaining 
forces (e.^.,viscosity, turbulent Reynolds stress, or external body 
forces). 

The following relations are of assistance in dealing with sur- 
face quantities. Let Q (xy,tj denote a variable of interest (specifical- 
ly, u or v). 

Then 

Qs i^'l) = Q{x,h (x,t), t) , 

so that 

dQs_ 

dt 
/ dQ ^ dhdQ\ 
ydt       dt dy J s 

\di ' '       dy  ) s 

where the second equality follows from (1). Also, 

(4) 

(5) 

dx 

where 

\dx dy  J s 

h' = — 

(6) 

(7) 

dh dh " + "r 
dt dx 

It is of interest to note in (5) that the time derivative at fixed 
X moving vertically with the surface is not the material derivative 
D/Dt in (2) and (3) with the horizontal advection dropped. One 
finds, however, from (5) and (6) that 



dt 

^Qs      / dQ dQ dQ \ 

3.V I   dt dx dy  J 
(8) 

which is the material derivative at the surface 

We now define a variable 

g^ (x./j  =  «_j.  +  h' v^ , (9) 

that may be recognized as the x derivative of the line integral 
\vdl taken along the surface (This line integral, when taken 
over the extent of a solitary wave has been referred to as the 
circulation of the wave [6].) Taking the time derivative of (9) 

(I) du^       du^ 
——   \     -  %  for — and likewise 

j dx dt 
and substituting 

for t'j., leads with (1) - (3) to the following: 

y 

d_ 

dx ( e + gh  - 
+  v\ 

+  «<. 9s 
) 

(10) 

This result does not require the flow to be irrotational. If the 
fluid is barotropic (g = Qipji then one replaces p^Q in (10) 
with (\dp/Q}^. Equation (10) is the result we refer to as the 
"conservation-of-velocity law."" since in case Fy. - F,, = 0 it 
leads to constancy of \q^ dx for flows that are periodic or are 
quiescent at infinity. 

Equation (10) has the attractive property that for F = 0 it allows 

prediction of q^ from quantities known only at the surface The 
same holds for prediction of h from equation (1). Thus for the 
three quantities u^, v^, h we have two prognostic equations in- 
volving differentiation only along the surface. This is a signifi- 
cant result for modeling purposes, since it reduces the prognostic 
equations from two dimensions to one A similar equation struc- 
ture has been exploited successfully using Bernoulli's law for 
the case of irrotational flow to simulate large amplitude deep 
water waves [4]. One would expect, therefore, that (10) would 
be of value in the simulation of forced waves or in situations 
where an alternative to the Bernoulli formulation may be 
desirable 

B. Relation to the circulation 
theorem 

Equation (10) becomes recognizable as a variant of Kelvin's cir- 
culation theorem cast in an Eulerian representation upon con- 

sideration of the following. Let a and b be abscissae of two points 
on the surface and moving with the fluid. Then 

^    lb        , ,b 9^.v   , 1   u 

Dt a a    at \  a 

(* / ^ +  ^"' ^^ \ dx 
a   \dt dx        J 

On the surface, dy = h' dx, so that (9)-(ll) give 

(11) 

— ]    u^ dx +  i\ dy  =   J   - ( f „ dx  + Fy dy j 
Dt a a   Q ^ 

•( 2 
gh\ (12) 

For conservative forcing, this becomes a familiar result of Limb 
[7]. If the surface closes upon itself, then a and b are the same 
point and conservative forcing leads to constancy of the circula- 
tion in a moving circuit. Thus the circulation theorem is 
recovered. 

C. Relation to Bernoulli's law 

For irrotational flows, Bernoulli's law is 

^=   --  iu^^v^)-t-gy^fit), 
dt 2 e 

(13) 

where (/) (xy.t) is the velocity potential and/an arbitrary func- 
tion of time. We note from (6) and (9) that 

The assumption of irrotational flow requires the forcing term 
in (10) to be the gradient of a potential W (xy.tj. Then an .v 
integral of (10) yields, with (13) and (14). 

d(t>, 1 , P, = - w, 
dt Q     ' Q 

ui  +  v\ 
U]   + (15) 

d<i>. 
+ f(t) 

Tiking the next to last term to the left hand side and recognizing 

the result as  , then substracting V    • V   V   from both 
Dt 

sides, we find 



(?) s     Q Q 
gh 

ui +  vi 

2 
+ f(t) . (16) 

q, = (1 + h'i^^T. v0;,, (22) 

This is a simple generalization of (13) for conservative forcing, 
so that (10) reduces to Bernoulli's law for irrotational flow. 

3. Application to wave 
models 

Assuming the surface forcing and pressure to be known, equa- 
tions (1) and (10) provide two constraints for the three variables 
h, «j, and v^. The third constraint necessary to close the sj'stem 
is a two-dimensional boundary value problem resulting from 
incompressibility. Equations (1) and (10) involve only surface 
values as a function oix and t. There is thus strong motivation 
to reduce the two-dimensional (xy) boundary value problem 
to one dimension (x). If this can be done, the entire system 
becomes one dimensional in space, yielding substantial advan- 
tages in available resolution and speed for a numerical model 
of system. For shallow water waves this can be accomplished 
through expansion of the velocity potential in powers of h [1]. 
For deep water waves one can choose between a singular in- 
tegral equation method [4] or a conformal mapping to a flat 
surface [5]. We will simply outline the problem and its bound- 
ary conditions. The mechanics of actually solving the bound- 
ary value problem as a one-dimensional system are addressed 
elsewhere [1,4,5]. 

The following discussion will be aided by definition of unit vectors 
tangent to and normal to the surface. 

T   =   (1, h') / (1   +   /&'2//2 

n = (-h: 1) / (1 + h'^fl-^ 

(17) 

(18) 

We consider two general cases: the velocity potential formula- 
tion for irrotational flows and the streamfunction formulation 
for rotational flows. For irrotational flows we have 

30 

bx 

H_ 
by 

and 

V' 0 = 0 . 

(19) 

(20) 

(21) 

Integration of (10) forward in time yields q^, which is related 
to the tangential derivative of 0 by the following combination 
of (9) and (17): 

On the other hand, time advancement of h requires knowledge 
of the normal derivative: 

— = {\ + h'T (n • V0;j . 
dt 

(23) 

The boundary value problem for this case is then to find 
90 d<b 
— given — (or by integration of (14), 0^. itself) at the surface 
dn 9T 

The lower boundary condition for shallow water is no normal 
flow at the bottom (zero normal derivative of 0), and for deep 
water vanishing flow at great depth (0 tending to zero). 

In the case of rotational flow, the complementary problem arises. 
One has 

d± 
dy 

V   =    -   —i- 

dx 

V \P =   -  oj, 

where the vorticity w is 

dv       du 

dy 

(24) 

(25) 

(26) 

(27) 

and must either be carried as a variable of integration or specified 
by a turbulence model. Time advancement of (10) provide values 

^s = (1  + h' il^ (n •  V '/'J 5 , (28) 

while (1) becomes 

— = - r^ + h'ii^ (T. V'/';^. (29) 
dt 

^  _d^, 

dx 

One recognizes the second equality in (29) as Stoker's statement 
of mass conservation [8]. Thus in the vorticity-streamfunction 
formulation, knowledge of surface values aOows prediction of 

— . The boundary value problem is thus to find —, given 
dn ' dr 
d± 
dn 

at the surface The lower boundary conditions are physically 

the same as in the irrotational case Without loss of generality, 
they can be stated as v^ = 0 for shallow water and xp — 0 
for deep water 



4. Summary 
The governing equations for a fluid surface lead to a conserva- 
tion law (10) for a surface velocity variable g^ = u^ + h'v^. 
This "conservation-of-velocity" law is an extension of Kelvin's 
theorem to a fixed Eulerian frame of reference, and recovers 
Bernoulli's law for irrotational flow. The result (10) may be in- 
corporated in a Boussinesq-type wave model, extending its ac- 
curacy to aU orders in nonlinearity Such a model has been suc- 
cessfully constructed and applied to irrotational waves in shallow 
water [1]. Deep water waves and rotational flows are also amenable 
to description by such a model with the addition of an appropriate 
solver for Poisson's equation and vorticity equations, respectively 
The importance of the results derived here is that when the 
surface forcing F is specified, existing techniques for solving 
Poisson's equation in shallow water [1] or deep water [4,5] allow 
the entire system to be solved in one spatial dimension. 
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